An Alternate Formulation of Transformers

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Tanmoy Chakraborty Associate Professor, IIT Delhi <https://tanmoychak.com/>

OpenAI introduces ChatGPT search !

Announced on October 31, 2024

[OpenAI Blog](https://openai.com/index/introducing-chatgpt-search/)

We can now get answers with links to relevant web sources!

The search model is a finetuned version of GPT-4o, **posttrained using novel synthetic data generation techniques, including distilling outputs from OpenAI o1-preview**. ChatGPT search leverages third-party search providers to provide the information users are looking for.

OpenAI has partnered with news and data providers to add up-to-date information for categories like weather, stocks, sports, news, and maps. ChatGPT will choose to **search the web based on what we ask**, or **we can manually choose to search by clicking the web search icon**.

Recall: Masked Self-Attention in Decoders

Self-Attention: Scaled dot-product attention

$$
Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})
$$

where,
$$
Q = XW^Q
$$
, $K = XW^K$, $V = XW^V$

Problem: While training autoregressive models (with next-word-prediction objective), Transformers can see the future.

• For a current token x_i , the attention scores are computed with all tokens in the sequence including those which comes after x_i (as the whole sequence is available to us during training).

Solution: Masking

 $\sqrt{2}$

Recall: Masked Self-Attention in Decoders

Masking: 'Masked' scaled dot-product attention

$$
\text{Attention}(Q, K, V) = \underbrace{\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + M\right)V}
$$

where, masking matrix M is defined as:

$$
\widehat{M_{ij}} = \begin{cases} 0 & \text{if } j \leq i \\ -\infty & \text{if } j > i \end{cases}
$$

For future tokens, the attention scores become zero after applying softmax [*softmax(-∞) = 0*].

 \bullet Effectively, **after masking**, the query is the current token x_i , and the keys and values come from the tokens before it, including itself (i.e., x_j , $j \leq i$).

- Each input embedding gets updated via vector additions from the attention and feed-forward blocks producing **residual stream states** (or intermediate representations). One residual
	- The final layer residual stream state is then projected into the vocabulary space via the unembedding matrix W_U є $R^{d\times |V|}$ and normalized via the *softmax*.

ባ $\boldsymbol{\Lambda}_1$

block

Re-writing the Masked Self-Attention Equation

Now let's re-write the masked attention equation for a current token $x_i.$

- Assume that we are considering the **attention head** *h* of **layer** *l.*
- Let's denote the matrix with the **output hidden representation from layer** *k* **of previous** $\mathop{\mathsf{tokens}}\nolimits x_j, \ j \leq i \text{ as } X_{\leq i}^k$.

Thus, for calculating attention scores for **attention head** *h* of **layer** *l*, input to the attention sub-layer is the output representation from the previous layer *l-1*.

QK Circuit

 $\operatorname{\mathsf{QK}}$ (query-key) circuit: $W_{QK}^h =\; W_Q^h W_K^{h_{\mathsf{T}}}$

• QK circuits are responsible for reading from the **residual stream**.

Let's now look at the residual stream

Residual Stream Perspective

The final logits are produced by applying the unembedding. $T(t) = W_U x_t^L$

An MLP layer, m , is run and added to the residual stream. $x_i^{\mathcal{L}} = x_i^{\text{mid}, \mathcal{L}} + m(x_i^{\text{mid}, \mathcal{L}})$

Each attention head, h , is run and added to the residual stream. $\sum_{\mu}^{\mathbf{h}}$ Attn^{l,h}($X_{\leq i}^{l\text{-}1}$) $x_i^{\text{mid},l} = x_i^{\ell_1} +$

- Each input embedding gets updated via vector additions from the attention and feed-forward blocks producing **residual stream states** (or intermediate representations). residual
- block The final layer residual stream state is then projected into the vocabulary space via the unembedding matrix W_U є $R^{d\times |V|}$ and normalized via the *softmax*.

Elhage, et al., A Mathematical Framework for Transformer Circuits

One

Combining the Output of Multiple Attention Heads

OV Circuit

Value vector $\text{Attn}^{l,h}(\bm{X}_{\leq i}^{l-1}) = \sum a_{i,j}^{l,h} \bm{x}_j^{l-1} \bm{W}_V^{l,h} \ \bm{W}_O^{l,h}$ $j \leq i$ $= \sum a_{i,j}^{l,h} x_j^{l-}$ $j \leq i$

OV (output-value) circuit: $W_{OV}^{l,h} = W_{V}^{l,h} W_{O}^{l,h}$

• OV circuits are responsible for writing to the **residual stream**.

Attention Block Output

The attention block output is the sum of individual attention heads, which is subsequently added back into the residual stream.

Prediction as a Sum of Component Outputs

• Prediction head of a Transformer consists of an unembedding matrix: $W_{I\pi}$ \in $\mathbb{R}^{d\times}$,

We can rearrange the traditional forward pass formulation to separate the **contribution of each model component to the output logits**:

 W_{11} \approx

• Residual networks work as ensembles of shallow networks, where **each subnetwork defines a path in the computational graph**.

Consider a two-layer attention-only Transformer, where each attention head is composed just by an OV matrix:

$$
f(\boldsymbol{x}) = \boldsymbol{x}^1 + \boldsymbol{W}_{OV}^2(\boldsymbol{x}^1), \text{ with } \boldsymbol{x}^1 = \boldsymbol{x} + \boldsymbol{W}_{OV}^1(\boldsymbol{x})
$$

We can decompose the forward pass as:

Direct path
\n
$$
f(x) = \boldsymbol{x} \boldsymbol{W}_U + \boldsymbol{x} \boldsymbol{W}_{OV}^1 \boldsymbol{W}_U + \boldsymbol{x} \boldsymbol{W}_{OV}^1 \boldsymbol{W}_{OV}^2 \boldsymbol{W}_U + \boldsymbol{x} \boldsymbol{W}_{OV}^2 \boldsymbol{W}_U.
$$
\n
$$
\text{Virtual attention heads (V-composition)}
$$

- This term depicts the path involving both attention heads, and is referred to as **virtual attention heads doing V-composition**
- This is called 'composition' since the sequential writing and reading of the two heads is seen as OV matrices composing together.
	- The amount of composition can be measured as:

$$
||W^1_{OV}W^2_{OV}||_F / ||W^1_{OV}||_F||W^2_{OV}||_F
$$

Ferrando et al., A Primer on the Inner Workings of Transformer-based Language Models

 \boldsymbol{x}

 $f(\boldsymbol{x})$

 \boldsymbol{W}_{U}

 $\big| \! W_{OV}^2 \!$

- In full Transformer models, Q-composition and K-composition, i.e., compositions of W_O and W_K with the W_{OV} output of previous layers, can also be found.
- Such decomposition enables us to localize the inputs or model components responsible for a particular prediction.

Why Do We Need Such a Formulation?

- Better understand the information flow within Transformer-based LLMs.
- Reveals how each layer incrementally transforms token representations.
	- Shows how attention heads and FFNs contribute to language modeling.
- Breaking down the contributions of individual circuits allows us to interpret which aspects of the model influence specific predictions.

Thus, through this formulation, the behavior of attention heads, the interaction between tokens, and the role of the residual stream can be explored more clearly.

